
Image reconstruction with
non-parametric noise models
Bildrekonstruktion mit
nichtparametrischen Rauschmodellen

Bachelorarbeit

im Rahmen des Studiengangs
Mathematik in Medizin und Lebenswissenschaften
der Universität zu Lübeck

Vorgelegt von
Felix Kastner

Ausgegeben und betreut von
Prof. Dr. Jan Lellmann
Institute of Mathematics and Image Computing

Mit Unterstützung von
Dr. Yury Korolev
Institute of Mathematics and Image Computing

Lübeck, den 14.11.2017





Eidesstattliche Erklärung
Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter
Benutzung der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

Lübeck,
14.11.2017

Felix Kastner





Abstract
In many practical situations, such as medical applications, images of interest cannot
be measured directly. Therefore, indirect measurement methods are employed, which
measure related quantities. Then special reconstruction methods are used to infer about
the quantities of interest from the data. These data also usually contain noise, thus
the task of image reconstruction is most often complemented with the task of denoising.
While current methods try to model the statistical distribution of the noise, in many
practical situations the true noise distribution may be unknown or exact modelling may
not be computationally feasible. Therefore there is a need for approximate methods
that do not assume any particular noise distribution. Such models may be referred to as
non-parametric noise models.
The goal of this thesis is a numerical study of a recently proposed approach that models

errors in the data using intervals in a suitable partial order. From the statistical point of
view, this corresponds to using confidence intervals for the unknown exact measurements
rather than point estimates. In this thesis the performance of this method is studied
in problems with unbounded noise and compared to existing approaches based on, e.g.,
Gaussian noise assumptions. To this end first a short introduction into variational
methods for the solution of inverse problems as well as the basics of Banach lattices will
be given.

Kurzfassung
In vielen praktischen Situationen, wie zum Beispiel medizinischen Anwendungen, können
Bilder nicht direkt aufgenommen werden. Deswegen werden indirekte Bildgebungsver-
fahren verwendet, die verwandte Parameter messen. Dann werden spezielle Rekonstruk-
tionsverfahren verwendet, um Informationen über die gesuchte Größe aus den Daten
herzuleiten. Da diese Daten üblicherweise verrauscht sind, wird die Bildrekonstruktion
meist durch Entrauschen ergänzt. Während aktuelle Methoden versuchen, die Verteilung
des Rauschens exakt zu modellieren, ist diese in vielen Anwendungen oft unbekannt
oder die numerische Umsetzung zu aufwändig. Deshalb werden approximative Methoden
benötigt, die keine spezielle Verteilung des Rauschens annehmen. Diese Modelle können
als nichtparametrische Rauschmodelle bezeichnet werden.
Das Ziel dieser Arbeit ist eine numerische Studie eines kürzlich vorgestellten Ansatzes,

welcher die Fehler in den Daten mit Hilfe von Intervallen in einer geeigneten Halbord-
nung modelliert. Aus einem statistischen Blickwinkel entspricht dies der Verwendung
von Konfidenzintervallen für die unbekannten exakten Messwerte anstelle von Punk-
tschätzern. In dieser Arbeit wird die Leistung dieser Methode anhand von Problemen
mit unbeschränktem Rauschen untersucht und mit existierenden Ansätzen, die zum
Beispiel auf der Gauss-Annahme beruhen, verglichen. Hierfür wird zunächst eine kurze
Einführung in Variationsmethoden zur Lösung inverser Probleme und die Grundlagen
sogenannter Banach-Verbände vorgestellt.
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Introduction
Image reconstruction is the task of recovering the original image from a measurement of
a related quantity. Typically this measurement is also corrupted, e.g., by noise or blur.
There are many important applications where only noisy or blurry images are available,
e.g., in astronomy where the target is far away and a lot of signals interfere with the
observation.
Image reconstruction fits into the broader class of problems where we want to get

information about a quantity of interest that cannot be measured directly. We then need
to reconstruct the information from observable data that is related to the quantity of
interest. We call this inverse problems because we want to reconstruct a ”cause“ from
an observed ”effect“. The corresponding forward problem would be to calculate the effect
from a given cause.
Inverse problems are often ill-posed and therefore need regularisation. To construct a

regularisation algorithm we need to have some knowledge of the existing noise, because as
was first shown in [5] there cannot exist regularisation algorithms for ill-posed problems
that are independent of the noise level in the data. Current approaches either explicitly or
implicitly assume a specific noise distribution. For example in variational regularisation
the L2 fidelity term is tailored to Gaussian noise, the L1 fidelity to impulse noise and
the Kullback-Leibler divergence to Poisson noise. These are all convex but for some
noise distributions, like the Rician distribution, the exact fidelity term is more complex
and non-convex. In this case or if the true noise model is unknown often the standard
assumption of a Gaussian distribution is made [52, 53].
In this thesis we will study a new fidelity term that makes only minimal assumptions

about the existing noise and can thus be used in situations in which the noise distribution
is unknown or too complex. Our goal is to study numerically whether this new approach
is better suited to reconstruct images corrupted by unknown or complex noise than
models using a false but simple assumption on the noise distribution.
The thesis consists of three chapters. In Chapter 1 we will first specify the notion of

inverse problems. Then we will see how variational methods can be used to regularise
ill-posed problems. We will also discuss the choice of regularisation and fidelity terms in
special cases.
In Chapter 2 we will give a brief introduction into Banach lattices and present the

partial order based approach. We will discuss the choice of order intervals in problems
with unbounded noise and study the role of the so-called quantile parameter, which
determines the width of the intervals, as a regularisation parameter that balances the
influence of the data and the regulariser on the reconstruction.
In the last Chapter 3 we will study the new model in conjunction with the total variation

regulariser and then look at the numerical performance of the method in application
to image denoising. We compare the new approach to the ROF model and the TV-L1

model.
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Chapter 1: Inverse problems

Chapter 1: Inverse problems
In [36] J. B. Keller defined inverse problems as follows:

“We call two problems inverses of one another if the formulation of each
involves all or part of the solution of the other. Often, for historical reasons,
one of the two problems has been studied extensively for some time, while
the other is newer and not so well understood. In such cases, the former is
called the direct problem, while the latter is called the inverse problem.”

An example of an inverse problem is inferring the shape of an object by looking at the
shadow it casts on a wall. The corresponding forward problem is predicting the shape
of the shadow if the light is known to come from a particular direction.
Forward problems are typically well-posed in the sense of Hadamard [30, 31], i.e. they

fulfil the following three conditions:

1. a solution exists (existence),

2. the solution is unique (uniqueness),

3. and the solution depends continuously on the data (stability),

whereas the corresponding inverse problem is often ill-posed, meaning that one or more
of these conditions are not satisfied. In this thesis we consider inverse problems for which
the first two conditions are satisfied, but the third one may be violated.
One approach to overcome the instability is to approximate the problem by a para-

metrised family of well-posed problems, the solutions of which converge to the solution
of the ill-posed problem as the parameter approaches some limit value. This is known
as regularisation [21].
The truncated singular value decomposition [32] and regularisation by projection [21]

are examples of regularisation methods for ill-posed inverse problems. However, perhaps
the most widely used approach is variational regularisation, which is the framework we use
in this thesis. In this chapter we first present the variational approach to inverse problems
and regularisation, introducing the concepts of fidelity and regularisation functionals. In
Section 1.2 we will discuss some commonly used regularisers and their properties and in
Section 1.3 we will present a statistical motivation for the choice of fidelity terms.

1.1 Variational Methods

The main idea of variational regularisation is to approximate the solution of an ill-posed
inverse problem by a solution of a suitable optimisation problem. In this section we
will recall three different but connected approaches, namely Tikhonov regularisation, the
residual method and the method of quasi-solutions.
Inverse problems are typically formulated as operator equations

Au = f, u ∈ U, f ∈ F, (1.1)
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1.1 Variational Methods

where U and F are vector spaces, typically Hilbert or Banach spaces. A : U→ F is called
the forward operator and models the relationship between the quantity of interest u
and the measurement f . In practice, the data f as well as the operator A will often
be noisy. The noise in the measurements typically comes from the finite precision of
measurement devices, while errors in the operator are due to the discrepancy between the
real-world phenomena and the mathematical models used or to the uncertainty in some
model-related parameters. We will denote by A? and f? the unknown exact operator and
measurement respectively. In this work U and F are assumed to be Banach spaces and
we will only consider operators A? that are linear, bounded and injective. We assume
that a solution exists and the injectiveness of A? guarantees that it is unique. We will
call this solution u?.
A popular approach to solving inverse problems is to use variational methods to find

an approximation to u? as a minimiser of a suitable functional. This functional typically
consists of a fidelity term F : F× F→ R and a regularisation functional R : U→ R:

min
u∈U

F(Au, f) + αR(u), (1.2)

where α is the regularisation parameter, this approach is referred to as Tikhonov regular-
isation [33]. Here F measures how good u explains the data and R measures how good
u satisfies a prior assumption like smoothness or sparseness.
There exist different fidelity terms to model different notions of closeness between the

predicted and measured data. The choice of the fidelity term is typically motivated by
the statistics of the underlying noise in the data. Some typical fidelities will be discussed
in Section 1.3. There are also different regularisation functionals that promote different
properties of u. Ideally R(u) should be small for u = u? and big for solutions u with
unfavourable structure. We will discuss some regularisers in more detail in Section 1.2.
The regularisation parameter α balances the influence of the fidelity term against the

regulariser. The bigger we choose α the more we force the solution to satisfy the prior
assumptions and the smaller we choose α the more we favour closeness of Au to the
data f .
In practice it is desirable to choose this parameter automatically, depending not only

on the noise level in the data, but also on the data themselves. Suppose we know that
the error in the data can be bounded as ‖f? − f‖ ≤ δ. Then it can be shown that
the minimisers of (1.2) converge to the exact solution u? as δ → 0 and simultaneously
the regularisation parameter is chosen as a function of δ such that α(δ) δ→0−−−→ 0 and
δ2

α(δ)
δ→0−−−→ 0 hold [21]. This is known as an a-priori parameter choice rule. Optimal

a-priori parameter choice rules require knowledge that is often not available. Thus
a-posteriori parameter choice rules like the discrepancy principle [21] are widely used.
An alternative approach is known as the residual method [33]. It consists in minimising

the regulariser subject to fidelity constraints:

min
u∈U

R(u) s.t. F(Au, f) ≤ δ, (1.3)

for some estimate of the noise level δ > 0. Among all elements u ∈ U that satisfy this
fidelity constraint we choose the one that best fits our prior knowledge. If we choose

3



Chapter 1: Inverse problems

the parameter α(δ) in (1.2) according to the discrepancy principle [21] then the two
approaches are equivalent.
Yet another approach consists in minimising the fidelity subject to a regularity con-

straint in terms of R. It is known as the method of quasi-solutions [33] and results in
the following optimisation problem:

min
u∈U

F(Au, f) s.t. R(u) ≤ τ. (1.4)

This method is used less often but can be helpful if a bound for the regularity of the
solution is known a priori [19].
A good choice of the fidelity term and the regulariser is crucial for the performance of

the method and depends on the task one would like to solve. In the next two sections
we will present some common choices for these functionals.

1.2 Regularisers

If the solution space U is a reflexive Banach space then a possible choice of the reg-
ulariser is the norm in U [33]. Restricting our solution, e.g., to the Sobolev space
U = W 1,2(Ω), Ω ⊂ R2 we could use the norm ‖u‖W 1,2(Ω)

..= ‖u‖L2(Ω) + ‖∇u‖L2(Ω) and
obtain smooth solutions with weak first derivatives in L2(Ω).
In natural images and imaging applications, however, sharp edges are common and thus

other regularisers are used that allow to preserve jumps. Without claiming completeness,
we list some regularisers that are widely used in image reconstruction. In this section
Ω ⊂ R2 is assumed to be a two-dimensional Lipschitz domain.

Total Variation
The total variation (TV) is one of the most widely used regularisers. It was first intro-
duced into the field of image reconstruction in [47]. For a two-dimensional Lipschitz
domain Ω ⊂ R2 and a function u ∈ L1(Ω) the isotropic total variation is defined as

TV(u) ..= sup
{∫

Ω
u(x) divϕ(x)dx : ϕ ∈ C1

c

(
Ω,R2

)
, ‖ϕ‖∞ ≤ 1

}
, (1.5)

where divϕ = ∂ϕ1
∂x1

+ ∂ϕ2
∂x2

and ‖ϕ‖∞ = supx∈Ω‖ϕ(x)‖2. For u ∈ C1 this is equivalent to

TV(u) =
∫

Ω
‖∇u(x)‖2dx. (1.6)

All functions u ∈ L1(Ω) with TV(u) <∞ form the space of functions of bounded variation

BV(Ω) ..=
{
u ∈ L1(Ω): TV(u) <∞

}
, (1.7)

which becomes a Banach space with the norm

‖u‖BV(Ω)
..= ‖u‖L1(Ω) + TV(u). (1.8)
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1.2 Regularisers

It was shown in [3, Corollary 3.49 with Prop. 3.21] that the space BV(Ω) can be con-
tinuously embedded in L2(Ω) and compactly embedded in Lp(Ω) for 1 ≤ p < 2. See
[23] for more background on functions of bounded variation and [2] for an analysis of
TV-regularised inverse problems.
The reason for the popularity of TV as a regulariser is its ability to preserve edges. In

contrast to the Sobolev norm mentioned above it favours piecewise constant and thus
discontinuous solutions. For smooth regions in the exact solution, however, this leads
to a ”stair-like“ reconstruction. This effect is called staircasing and considered the main
weakness of TV in terms of reconstruction quality [14, 20, 42, 44, 46]. To reduce this effect
extensions of TV to include higher order derivatives have been proposed [11, 14, 15, 48].
Perhaps the most recognised model is the total generalised variation introduced in [11].

Total Generalised Variation
The second order total generalised variation [11] (TGV) for u ∈ L1(Ω) is defined as:

TGV2
α,β(u) ..= sup

{∫
Ω
u(x) div2 ϕ(x)dx : ϕ ∈ C2

c

(
Ω, S2×2

)
, ‖ϕ‖∞ ≤ α, ‖divϕ‖∞ ≤ β

}
,

(1.9)
where α, β > 0, S2×2 is the space of symmetric 2× 2 matrices, the divergence for these
matrices is defined as

divϕ =
(
∂ϕ1,1
∂x1

+ ∂ϕ1,2
∂x2

∂ϕ2,1
∂x1

+ ∂ϕ2,2
∂x2

)
and

div2 ϕ = ∂2ϕ1,1
∂x2

1
+ ∂2ϕ2,2

∂x2
2

+ 2 ∂
2ϕ1,2

∂x1∂x2
.

It was shown that TGV2(u) = 0 if and only if u is a polynomial of degree less than two
and thus TGV2 promotes piecewise affine solutions, effectively eliminating the staircasing
effect [11]. The space of functions of bounded second order generalised variation (BGV)

BGV2(Ω) ..=
{
u ∈ L1(Ω): TGV2

α,β(u) <∞
}

(1.10)

was shown to be independent of the weights α and β [11]. In [9] the authors proved that
the space BGV2(Ω) is isomorphic to BV(Ω).

TV-Lp infimal convolution
A disadvantage of TGV is that it uses higher order derivatives. To overcome this issue,
in [13] the authors proposed a family of infimal convolution type regularisers that use
only first order derivatives. They are defined as follows:

TVLpα,β(u) ..= min
w∈Lp(Ω)

α‖Du− w‖M + β‖w‖Lp(Ω), (1.11)

5



Chapter 1: Inverse problems

where Du is the distributional derivative of u, which is a finite Radon measure for
TV(u) <∞, ‖·‖M is the Radon norm of a measure and TV(u) = ‖Du‖M. The similari-
ties and differences to the TV and TGV functionals are best seen in the dual formula-
tion [13]:

TVLpα,β(u) = sup
{∫

Ω
u(x) divϕ(x)dx : ϕ ∈ C1

c

(
Ω,R2

)
, ‖ϕ‖∞ ≤ α, ‖ϕ‖Lq(Ω) ≤ β

}
,

(1.12)
where α, β > 0, 1 < p ≤ ∞ and q is the Hölder conjugate of p satisfying 1

p + 1
q = 1. For

sufficiently high values of p and suitable choice of α and β this model was also shown to
reduce staircasing significantly. Additionally it was shown that TVLpα,β(u) <∞ if and
only if TV(u) < ∞ and therefore the domain of this functional is exactly the space of
functions of bounded variation BV(Ω).

1.3 Relationship between fidelity terms and noise statistics

Following [17, 34] we will discuss the relationship between fidelity functionals and notions
of closeness of the measured and predicted data motivated by the statistics of the noise.
Taking for a moment the Bayesian point of view, we will discuss maximum a-posteriori
(MAP) estimates and show, for illustrative purposes, that a Gaussian noise assumption
leads to the widely used L2 fidelity term in (1.2).
Consider the measurement and the unobservable quantity of interest as random vari-

ables F and U respectively. We are interested in the conditional probability

P (U = u |F = f) .

In this setting we regard the measurements f as discrete images drawn from a probability
distribution that depends on the unobservable quantity of interest u. This dependency is
given by the data model P (F = f |U = u), which is the conditional probability that the
measurement F would be f if u was indeed the state of the quantity U . The regularisers
from Section 1.2 can then be seen as a prior model P (U = u), assigning a probability
to all possible values of the unobservable quantity U .
In order to maximise the a-posteriori probability we use Bayes’ theorem and get

ũ = arg max
u∈U

P (u | f) = arg max
u∈U

P (f |u)P (u)
P (f) = arg max

u∈U
P (f |u)P (u) , (1.13)

where P (f) is a normalization term independent of u and therefore can be dropped
from the maximisation problem. Let f : Ω → R be the observation where Ω ⊂ N is a
discrete image domain and u is the unknown value of the quantity of interest. If we
assume independent additive noise with a zero-mean Gaussian distribution with standard
deviation σ for every pixel x ∈ Ω then the joint probability is

P (f |u) =
∏
x∈Ω

1√
2πσ2

e
−(f(x)−Au(x))2

2σ2 , (1.14)

6



1.3 Relationship between fidelity terms and noise statistics

where the constant factors independent of u can be dropped as they do not influence the
maximisation problem. As a prior model we want to use log-concave priors as they are
widely used and studied [12]:

P (u) = e−βR(u), (1.15)

where R(u) is a convex functional. Here a higher probability corresponds to a small
value of the regulariser R(u). Substituting into (1.13) we get

ũ = arg max
u∈U

∏
x∈Ω

e
−(f(x)−Au(x))2

2σ2 · e−βR(u)

= arg min
u∈U
‖f −Au‖22 + αR(u),

where we used that the logarithm is a strictly increasing function and we combined
the constants σ and β into one parameter α = 2σ2β. This corresponds to (1.2) with
F (Au, f) = ‖Au − f‖22, showing that the Gaussian assumption leads to an L2 fidelity
term in (1.2).
This connection between the noise assumption and the fidelity term is very important

as it allows us to construct fidelities tailored to specific noise models. In [39] it was
shown that for signal dependent Poisson noise the appropriate fidelity term is as follows:

F(Au, f) =
∫

Ω
Au(x)− f(x) logAu(x)dx, (1.16)

which is related to the Kullback-Leibler divergence. For salt & pepper or general impulse
noise the L1 norm F(Au, f) = ‖Au− f‖1 was shown to be a suitable fidelity term [43].
However, for some distributions the correct fidelity terms may be quite complicated.

For example, correct modelling of the Rician noise distribution results in a non-convex
fidelity term [22], which required the development of different convex relaxations [18, 22].
The situation can become even more complicated if the distribution of the noise is not
exactly known. This motivates the development of simple approximations of the fidelity
term, which do not assume any specific noise distribution. For this reason, [25] suggests
the use of confidence intervals for the unknown exact measurement as a fidelity term.
From the functional-analytic point of view this leads to the need to consider inverse
problems in functional spaces with partial order – Banach lattices. We will review this
approach in the next chapter.
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Chapter 2: Partial order based methods for
inverse problems

Partial order can be introduced in many functional spaces common in image processing,
such as Lp spaces, turning them into Banach lattices. The richer structure of Banach
lattices as compared to Banach spaces allows for a more detailed description of errors in
the data and the forward operator of an inverse problem using order intervals. In [37, 38]
a partial order based feasible set was proposed and a lattice analogue of the residual
method has been formulated.
In this chapter we will first review some definitions from the theory of Banach lattices

(Section 2.1) and then discuss inverse problems in Banach lattices (Section 2.2). The
relationship between this approach and some existing interval based methods will be
discussed in Section 2.3. The choice of the order intervals describing errors in the data and
the forward operator, crucial for practical applications, will be discussed in Section 2.4,
where we will also make a connection to confidence intervals announced in Chapter 1.

2.1 Banach lattices

Banach lattices are vector spaces that are equipped with a partial order as well as a
norm, which in a certain sense agree with each other. In this section we give a brief
introduction to Banach lattices following [1].
A vector space X equipped with a partial order ≥X is called an ordered vector space

if the order fulfils the following two conditions which ensure that it is compatible with
the algebraic structure of X:

∀x, y, z ∈ X : x ≥X y =⇒ x+ z ≥X y + z,

∀x, y ∈ X ∀α ≥ 0: x ≥X y =⇒ αx ≥X αy.
(2.1)

We also write y ≤X x if x ≥X y. If every pair x, y ∈ X has a least upper bound or
supremum and a greatest lower bound or infimum with respect to the order ≥X then
X together with ≥X is called a vector lattice or Riesz space. The supremum is typically
denoted by x ∨ y and the infimum by x ∧ y. These operations give rise to the notion of
an elements’ positive part, negative part and absolute value:

x+ ..= x ∨ 0, x− ..= (−x) ∨ 0 and |x| ..= x ∨ (−x).

Then also the following two equalities hold:

x = x+ − x−, |x| = x+ + x−.

If additionally the space X is equipped with a monotone norm ‖·‖ : X → R+, i.e. one
that fulfils the following condition

∀x, y ∈ X : |x| ≥X |y| =⇒ ‖x‖ ≥ ‖y‖,

8



2.2 Inverse problems in Banach lattices

then X is called a normed Riesz space. If X is complete with respect to ‖·‖, i.e. if X is
a Banach space, then X is called a Banach lattice.
We now turn to operators acting between Banach lattices and some of their properties.

A linear operator A : X → Y where X and Y are Banach lattices is called positive and
we write A ≥ 0 if

∀x ∈ X : x ≥X 0 =⇒ Ax ≥Y 0

and it is called regular if it can be written as the difference of two positive operators.
We denote the space of all regular operators between two Banach lattices X and Y by
Lr(X,Y ). Note that this space becomes itself an ordered vector space with the order
relation defined as follows:

∀A,B ∈ Lr(X,Y ) : A ≥Lr(X,Y ) B ⇐⇒ A−B ≥ 0.

It also holds that every regular operator between two Banach lattices is continuous and
hence bounded [1, Thm. 1.31].
In the following sections we will drop the subscript on the order relation whenever it

is clear which order is meant.

2.2 Inverse problems in Banach lattices

In this section we will review the approach taken in [37, 38]. Let U and F be Banach
lattices, u? ∈ U, f? ∈ F, A? ∈ Lr(U,F). Let further f be the noisy measurement of f?
and A be an approximation of the exact operator A?. Then the inverse problem we want
to solve is

Au = f. (2.2)

To quantify the uncertainty in the data and the operator we use intervals given in the
partial order:

f l ≤ f? ≤ fu,
Al ≤ A? ≤ Au

(2.3)

where Al, Au ∈ Lr(U,F) are regular operators and f l, fu ∈ F. Assuming u? ≥ 0 one can
show the inclusion of u? into the following feasible set [37]:

Zorder ..=
{
u ≥ 0: Auu ≥ f l, Alu ≤ fu

}
. (2.4)

Indeed, we have that

Auu? ≥ A?u? = f? ≥ f l,
Alu? ≤ A?u? = f? ≤ fu.

This set is convex since

Au (λu+ (1− λ)v) A linear= λAuu+ (1− λ)Auv
(2.1)
≥ λf l + (1− λ)f l = f l

9



Chapter 2: Partial order based methods for inverse problems

and

Al (λu+ (1− λ)v) A linear= λAlu+ (1− λ)Alv
(2.1)
≤ λfu + (1− λ)fu = fu

and λu+ (1− λ)v ≥ 0 for every u, v ∈ Zorder, λ ∈ [0, 1].
The residual method (1.3) with the feasible set (2.4) leads to the following minimisation

problem:
min
u∈U

R(u) s.t. u ≥ 0, Auu ≥ f l, Alu ≤ fu (2.5)

where R(u) is a regularisation functional. We will call (2.5) the partial order-based or
interval-based model or interval model for short. Note that if R(·) is convex, then (2.5)
is a convex optimisation problem.
The question now is whether this is indeed a good approximation to the inverse problem

(2.2). In classic methods where the error is bounded in the norm as ‖f? − fδ‖ ≤ δ, the
asymptotic behaviour of the solutions is analysed as δ → 0. The analogue in the lattice
framework is to analyse the convergence as the bounds (2.3) get tighter. Therefore we
consider sequences of bounds

f l1 ≤ f l2 ≤ . . . ≤ f? ≤ . . . ≤ fu2 ≤ fu1 , (2.6)
Al1 ≤ Al2 ≤ . . . ≤ A? ≤ . . . ≤ Au2 ≤ Au1 (2.7)

such that the intervals converge in norm to a single point:∥∥∥fun − f ln∥∥∥ n→∞−−−→ 0 (2.8)∥∥∥Aun −Aln∥∥∥ n→∞−−−→ 0. (2.9)

Then we consider the sequence of minimisers of (2.5):

un ∈ arg min
u∈U

R(u) s.t. u ≥ 0, Aunu ≥ f ln, Alnu ≤ fun . (2.10)

The following theorem states that the sequence of minimisers un indeed converges to the
exact solution u? of the inverse problem (2.2).

Theorem 1 (Convergence [37, Thm. 2]).
Suppose that the regularisation functional R fulfils the following assumptions:

1. R is bounded from below,

2. R is lower semi-continuous and

3. the non-empty sublevel sets of R are sequentially compact in U.

Then for un as defined in (2.10) un
n→∞−−−→ u? strongly in U.

This result guarantees that the model (2.5) is a reasonable approximation to the
problem (2.2). The performance of this method in practice largely depends on the choice
of the bounds f l, fu, Al and Au. The choice of the bounds for the data will be discussed
in Section 2.4. The choice of the bounds for the operator is not the topic of this work.

10



2.3 Relation to existing methods

The fact that the optimisation problem (2.5) is convex even if errors in the operator are
present is a favourable feature of the approach. This distinguishes it from the standard
norm based methods. To see this, consider the case when the inverse problem (2.2) is
formulated in normed spaces. Then one can assume that an upper bound for the noise
is given in terms of norms:

‖f? − fδ‖ ≤ δ,
‖A? −Aη‖ ≤ η

(2.11)

where fδ and Aη are the inexact, noisy data and operator, f? and A? are the unknown
exact data and operator respectively and δ and η are the bounds. Now a feasible set, i.e.
a subset of U of elements that solve the problem (2.2) within the tolerances allowed by
(2.11), can be defined as follows [33]

Znorm ..= {u ∈ U : ‖Aηu− fδ‖ ≤ η‖u‖+ δ} . (2.12)

It can be verified easily that the exact solution u? belongs to Znorm:

‖Aηu? − fδ‖ = ‖(Aηu? −A?u?) + (f? − fδ)‖
≤ ‖Aηu? −A?u?‖+ ‖f? − fδ‖
≤ η‖u?‖+ δ.

The residual method (1.3) in this case leads to the following optimisation problem:

min
u∈U

R(u) s.t. ‖Aηu− fδ‖ ≤ η‖u‖+ δ.,

where R(u) is a regularisation functional. Unless η = 0 the set (2.12) is non-convex and
therefore does not allow us to use the well studied techniques of convex optimisation.

2.3 Relation to existing methods

The approach presented in Section 2.2 is not the only interval-based method in imaging.
In this section we would like to highlight the connection between this approach and
the approach taken in [8, 10] for TV- or TGV-based decompression of JPEG images.
As we shall see, the approach of [8, 10] is a special case of the framework presented in
Section 2.2.
In [8] the authors proposed a variational model for JPEG decompression based on

minimizing the Total Variation over a special set of approximate solutions defined by
the data contained in the JPEG image. Further analysis of the general model with Total
Generalised Variation regularisation was presented in [10].
The JPEG algorithm compresses images by computing the coefficients of the blockwise

discrete cosine transform (BDCT) and then rounding them to integers. This quantisation
leads to a loss of information and during the reconstruction we in fact only know that
the true BDCT coefficient lies between two consecutive integers. Using this information,
the authors of [8, 10] defined a feasible set as follows:

11



Chapter 2: Partial order based methods for inverse problems

U ..=
{
u ∈ L2(Ω): (Au)n ∈ Jn ∀n ∈ N

}
,

where A : L2(Ω)→ `2 is the BDCT forward operator and (Jn)n∈N ..= ([ln, rn])n∈N are the
lower and upper quantisation bounds for the BDCT coefficients (integers).
For decompression they propose to solve the following optimisation problem:

min
u∈L2(Ω)

TV(u) + IU (u), (2.13)

where IU is the convex indicator functional associated with the set U .
Let us see how this approach fits into the framework of Section 2.2. The space L2(Ω)

becomes a Banach lattice if it is equipped with the following partial order

∀f, g ∈ L2(Ω): f ≥L2(Ω) g ⇐⇒ f(x) ≥ g(x) for almost every x ∈ Ω, (2.14)

whereas `2 becomes a Banach lattice with the following partial order

∀ (xn)n∈N , (yn)n∈N ∈ `
2 : (xn)n∈N ≥`2 (yn)n∈N ⇐⇒ xn ≥ yn ∀n ∈ N. (2.15)

Let l, r be the two sequences defined by the lower and upper bounds of the intervals
(Jn)n∈N:

l ..= (ln)n∈N and r ..= (rn)n∈N . (2.16)

Although A is acting L2(Ω) → `2 the requirement that the bounds l, r are in `2 might
be too restricting. Therefore we require that

l, r ∈ `∞

and consider A acting from L2(Ω) into `∞ as well, which is a Banach lattice with the
same partial order (2.15). Using the natural assumption that the true image is positive,
i.e. u? ≥ 0, we can define the following feasible set:

U =
{
u ∈ L2(Ω): u ≥ 0, l ≤`∞ Au ≤`∞ r

}
, (2.17)

which can be seen as the feasible set (2.4) with exact operator Al = Au = A.
The problem (2.13) can be reformulated as follows:

min
u∈L2(Ω)

TV(u) s.t. l ≤ Au ≤ r. (2.18)

The advantage of translating the problem (2.13) into the framework of Section 2.2
is that we can now apply Theorem 1, i.e., the solutions are guaranteed to converge as
the bounds get tighter. In the setting of [8, 10] this corresponds to convergence as the
quantization values for the BDCT coefficients get smaller.

12



2.4 Choice of the intervals

2.4 Choice of the intervals

Theorem 1 guarantees convergence of regularised solutions (2.10) to the exact solution
u? as the intervals (2.3) containing the exact right-hand side and operator get tighter.
In this thesis we only study the choice of the intervals for the data and assume the
operator to be exactly known. Section 2.3 gives an example of an applied problem where
these intervals arise naturally during quantisation and convergence of these bounds is
understood as successive refinement of this quantisation.
There are other cases when the intervals can be chosen rather straightforwardly. One

is the case of additive noise with finite support. Suppose that the measurement f is
corrupted by additive noise ε supported on the interval [εl, εu]:

f = f? + ε, εl ≤ ε ≤ εu,

where f? = Au? is the exact measurement. Then, given f and the pair (εl, εu), we can
find an interval containing the exact measurement f? as follows:

f − εu ≤ f? ≤ f − εl.

Convergence of these bounds is implied by the convergence of the support of the noise
[εl, εu] to a single point in the sense that ‖εu − εl‖ → 0.
If the noise is unbounded, the choice of the intervals is less straightforward. [25]

proposed to use confidence intervals for the unknown right-hand side as intervals [f l, fu]
in (2.3). If we assume additive zero-mean noise, then the measurement f is a random
variable with mean f?. If we had a series of repeated measurements, we could construct
confidence intervals for the true mean of f that would converge as the number of repeated
measurements would go to infinity [25].
Interpreting the intervals [f l, fu] in (2.3) as confidence intervals means the inequalities

f l ≤ f? ≤ fu hold only with a certain probability that diminishes as the number of
pixels in the image grows [25]. We will come back to this observation later in Chapter
3. The confidence level in this case can play the role of a regularisation parameter. It
determines the width of the intervals [f l, fu] and therefore balances the influence of the
fidelity term and the regulariser.
Since in practice we do not have a series of repeated measurements of the same object,

we have to come up with tricks to estimate the lower and upper bounds f l and fu

from a single measurement. Assuming that the noise is additive and independent and
identically distributed (i.i.d.) in different pixels and also assuming that we know the
ground truth in some background region of the image, we can obtain as many samples
of the noise as there are pixels in the background region. Using a histogram of this noise
and fixing a parameter β ∈ (0, 1), we can find an interval [εl, εu] containing (1−β) ·100%
of the noise samples. We use the β

2 -quantile of the noise distribution to find εl and the
(1− β

2 )-quantile to find εu. We will refer to the parameter β as the quantile parameter.
In Chapter 3 we will study numerically the effect of the quantile parameter β on the

reconstruction quality and the competitiveness of the interval-based approach in the case
of unbounded noise.

13



Chapter 3: Numerical study of the interval-based model for unbounded noise

Chapter 3: Numerical study of the interval-based
model for unbounded noise

In Section 2.4 we analysed how the intervals (2.3) can be chosen if the noise is not
finitely supported. In this chapter we will now investigate how the choice of the quantile
parameter impacts the reconstruction quality. We will also study whether the partial
order based approach can outperform standard approaches on images with non-Gaussian
noise.
In section Section 3.1 we will explain the set-up of the study. Section 3.2 is dedicated to

some properties of the partial order based model in conjunction with the total variation
regularisation functional. After a brief detour into how the optimisation problems can
be solved numerically in Section 3.3 we will explain how we chose the parameters for
the experiments in Section 3.4. In Section 3.6 we will then present the results of the
study and discuss how the choice of the quantile parameter influences the reconstruction
quality. Lastly we will draw some conclusions in Section 4.

3.1 Set-up

In this chapter we will work in a finite-dimensional setting where u ∈ U = In and
f, f l, fu ∈ F = Im are discrete images represented as column vectors, where I is the set
of possible pixel values. In order to concentrate on the choice of the quantile parameter
for the data we only study the case of denoising images, i.e., where the forward operator
A is the identity matrix and therefore n = m. For all experiments greyscale images with
values between 0 and 255 were used, i.e., I = [0, 255] ∩ Z.

Regularisation models
For the numerical study we use the model (2.5) with total variation regularisation (1.5)

min
u∈U

TV(u) s.t. f lβ ≤ u ≤ fuβ , (3.1)

where f lβ = f − εu and fuβ = f − εl. εl and εu are, respectively, the β
2 -quantile and the

(1− β
2 )-quantile from the histogram of the background noise as discussed in Section 2.4.

We use this regulariser because it is widely used and so we can get results that are
comparable to standard models. We will compare the results with two other well-known
total variation based approaches, namely the Rudin-Osher-Fatemi (ROF) model [47]

min
u∈U
‖u− f‖2 + αTV(u) (3.2)

and the TV-L1 model [16]
min
u∈U
‖u− f‖1 + αTV(u). (3.3)

14



3.1 Set-up

Quality metrics
To evaluate the reconstruction quality we calculate the peak signal-to-noise ratio (PSNR)
which measures absolute errors in every pixel as well as the structural similarity (SSIM)
index [55] which assesses the quality based on changes in the structural information. The
PSNR is defined as follows:

PSNR(x, y) = 10× log10

(
L2

MSE(x, y)

)
, (3.4)

where L is the peak signal level of the images, in our case L = 255, and MSE(x, y) =
1
n

∑n
i=1(xi − yi)2 is the mean squared error. A higher PSNR indicates better reconstruc-

tion quality. PSNR has been criticised as not agreeing with the human perception of
image quality [54], however, it is still widely used to assess reconstruction quality, e.g.,
[13, 49].
The SSIM uses a combination of three different characteristics of the compared images.

The luminance is estimated using the mean intensities µx, µy, the contrast is estimated
using the standard deviations σx, σy and the structure is estimated using the covariance
σxy. The SSIM is then defined as:

SSIM(x, y) = (2µxµy + C1) (2σxy + C2)(
µ2
x + µ2

y + C1
) (
σ2
x + σ2

y + C2
) , (3.5)

where C1 = (0.01 × L)2 and C2 = (0.03 × L)2 are regularisation constants to provide
stability in regions where the mean or standard deviation are close to zero, and L = 255
is the peak signal level. The SSIM is usually computed locally in every pixel and then
averaged to give one single quality measure of the entire image. The local SSIM is
computed over an isotropic Gaussian weighted window. The SSIM values range from 0
to 1, where 1 corresponds to an exact reconstruction.

The Rician distribution
As the true noise model we chose Rician distributed additive noise for the following
reasons. First, it often arises in image reconstruction. For example, in magnetic resonance
imaging (MRI), where the image is the magnitude of a complex signal with normally
distributed components and therefore follows a Rician distribution [6, 29]. The probability
density function of a Rician distributed variable is as follows:

P (x | ν, σ) = x

σ2 e
−(x2+ν2)

2σ2 I0

(
xν

σ2

)
, (3.6)

where I0(x) is the modified Bessel function of the first kind. Another reason for the choice
of Rician noise is that for small values of ν the distribution departs significantly from
the Gaussian distribution and therefore is not modelled accurately by the standard L2

fidelity, leaving room for improvement. An important feature of the Rician distribution
is that it is supported on the interval [0,∞) and thus admits only positive values.
An exact fidelity term for Rician noise in images was proposed in [22]. This fidelity term

is non-convex and subsequently different convex relaxations were developed [18, 22]. In
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Chapter 3: Numerical study of the interval-based model for unbounded noise

Figure 1. The six images used in the experiments: bird, cameraman, circles, horiz, lena, squares
(from top left to bottom right). Each image has a resolution of 256× 256px.

this work, we do not compare our approach to these models, since our goal is not to model
Rician noise, but to propose a simple approximate fidelity term that is independent of the
noise distribution. We will compare our approach to the L2 and L1 fidelity terms, which
are often used due to their simplicity also in situations where the necessary assumptions
on the noise distribution do not hold.

Test images
As test images we used three often-used real images and three synthetic images to assess
different aspects of the new approach. The original images (without noise) are shown in
Figure 1.

3.2 The TV regularised interval model

In this section we will discuss the model (3.1) and its properties. We will see that the
minimiser of (3.1) is not necessarily unique and introduce a small correction term to
ensure uniqueness and justify the use of quantitative image quality measures such as
PSNR and SSIM. We will then show that the used regularisation functionals fulfil the
assumptions made in Theorem 1.

Non-uniqueness
Since R0(u) = TV(u) is not a strictly convex functional, we cannot guarantee the
minimiser of (3.1) to be unique. Indeed consider the following simple example.
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3.2 The TV regularised interval model

Example 2.
Suppose there are constants c1 < c2 such that f li ≤ c1 and c2 ≤ fui for all i = 1, . . . , n.
Then for every c1 ≤ c ≤ c2 the constant function u ≡ c is a minimiser of (3.1) as
TV(u) = 0 and u ∈ Zorder.
In order to ensure uniqueness, we need to modify the regulariser. Since BV is a subset

of L1(Ω) it is natural to consider R1(u) = TV(u) + ‖u‖1 as a regulariser. However, as
in the standard TV-L1 model [16], the minimisers of (3.1) with R1(u) as regulariser are
not unique either. This can be seen in the following example.

Example 3.
Suppose we have d-dimensional data and the indices I =

{
ij
∣∣∣ j = 1, . . . , (2d)d

}
form a

d-dimensional cube with side length 2d. Now let fu ≡ c and f li =
{
c, i /∈ I
c− 1, i ∈ I

. Let

us now consider the data defined by (uτ )i =
{
c, i /∈ I
c− τ, i ∈ I

for 0 < τ ≤ 1. This leads to

R1(uτ ) = 2d× (2d)d−1 × τ + (nc− |I|τ) = nc, which shows that in this case the value
R1(uτ ) is independent of τ and thus every uτ is a minimiser.
To ensure uniqueness of the minimiser in our experiments we amended the TV func-

tional with an L2 term:

min
u∈U

TV(u) + γ
∥∥∥u− f̄∥∥∥

2
s.t. f l ≤ u ≤ fu, (3.7)

where f̄ is the mean of f and γ is a small constant because we don’t want the additional
term to significantly influence the outcome of the regularisation other than to guarantee
the uniqueness of the solution. In our experiments we set γ = 10−4. The minimiser of
this problem exists and is unique because the feasible set Zorder is closed, bounded and
convex and the employed regularisation functional, which is the sum of a convex and a
strictly convex functional, is strictly convex.

Convergence of the minimisers
Now we will analyse whether the functionals discussed above fulfil the conditions of
Theorem 1. In this paragraph we will work in the infinite-dimensional setting and set
U = F = L1(Ω) where Ω ⊆ Rn is a compact image domain. We consider the regularisers
as functionals R : U→ R≥0 ∪ {∞}.
Starting with the BV norm as regulariser R1(u) = TV(u) + ‖u‖1 we first observe

that it is bounded from below. Since TV is lower semi-continuous in the L1
loc(Ω) norm

topology [3, Prop. 3.6] and for compact Ω it holds that L1
loc(Ω) = L1(Ω) we get that TV

is lower semi-continuous with respect to the L1(Ω) norm topology. Therefore the second
assumption of Theorem 1 holds as well. It was shown in [3, Prop. 3.23] that any sequence
in the sublevel sets of the BV norm has a subsequence that weakly* converges in BV.
By [3, Prop. 3.13] this implies that the subsequence converges strongly in L1(Ω) showing
that the sublevel sets of R1(u) are sequentially compact in L1(Ω). Thus it satisfies all
assumptions of Theorem 1.
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Chapter 3: Numerical study of the interval-based model for unbounded noise

In fact, since in the absence of a forward operator the L1 norm is bounded on the
feasible set Zorder, the condition TV(u) ≤ λ implies the condition TV(u) + ‖u‖1 ≤ λ1
for some λ1 ≥ λ for every u ∈ Zorder. Therefore, also R0(u) = TV(u) satisfies the
assumptions of Theorem 1.
Now we will show that also R2(u) = TV(u)+‖u‖2 fulfils the assumptions of Theorem 1.

The first two assumptions hold analogously to the reasoning above. It remains to show
that the sublevel sets are sequentially compact in L1(Ω). Since closed subsets of compact
sets are also compact we will show that S2 ..=

{
u ∈ L2 ∣∣TV(u) + ‖u‖2 ≤ λ2

}
is a subset

of S1 ..=
{
u ∈ L1 ∣∣TV(u) + ‖u‖1 ≤ λ1

}
for some appropriately chosen λ1, as we have

already shown S1 to be compact. Closedness of S2 follows from the fact that both TV
and the norm are lower semi-continuous [3, Prop. 3.6]. If the domain Ω has finite measure
µ(Ω) <∞ then the space L2(Ω) can be continuously embedded in L1(Ω) as can be seen
using Hölder’s inequality for u ∈ L2(Ω) and I ∈ L2(Ω) where I(x) = 1 a.e. in Ω:

‖u‖1 = ‖Iu‖1 ≤ ‖I‖2‖u‖2 = µ(Ω)
1
2 ‖u‖2.

For u ∈ S2 we now get the following estimate:

TV(u) + ‖u‖1 ≤ TV(u) + µ(Ω)
1
2 ‖u‖2

if µ(Ω)
1
2 ≥ 1 ≤ µ(Ω)

1
2 (TV(u) + ‖u‖2) ≤ µ(Ω)

1
2λ2

if µ(Ω)
1
2 < 1 ≤ TV(u) + ‖u‖2 ≤ λ2.

Setting λ1 = max
{
µ(Ω)

1
2λ2, λ2

}
we see that S2 ⊂ S1. From this we can conclude

that the sublevel sets of R2(u) are sequentially compact in L1(Ω) and we get strong
convergence of the minimisers (2.10) in L1(Ω) by Theorem 1.

3.3 Optimisation methods

Since the problem (3.7) is convex, we can use the well-studied methods of convex opti-
misation [7]. Convexity ensures that every local minimiser is also a global minimiser. In
the case of strict convexity we find that the minimiser is also unique. A main advantage
of convex problems is that they can be solved efficiently in polynomial time. Polynomial
complexity is achieved by, e.g., interior-point methods [41]. Interior-point methods have
been developed first for linear programming problems [35] and were extended to handle
convex problems through the use of conic formulations in [41].
For the experiments we used the modelling framework CVX [27] to translate the

problem into a conic formulation and then used MOSEK [4, 40] to solve it. In this
section we want to recall the setting of conic problems and see how a conic reformulation
of (3.1) can be achieved. Then we will look at the CVX package and how it can be used
to solve medium-scale convex optimisation problems.

Conic problems
Let us first recall what a cone is. A subset K of a vector space V is called a cone if

∀x ∈ K ∀λ ≥ 0: λx ∈ K.
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3.3 Optimisation methods

A cone K is called:

closed if K is a closed subset of V ,

convex if ∀x, y ∈ K we have x+ y ∈ K,

pointed if K ∩ −K = {0},

solid if K has non-empty interior,

proper if K is closed, convex, pointed and solid.

Every proper cone K allows us to define a partial order ≥K on V as follows:

∀x, y ∈ V : x ≥K y ⇐⇒ x− y ∈ K.

A conic program can be formulated as [7]

min c>x s.t. Ax = b, x ≥K 0
⇔min c>x s.t. Ax = b, x ∈ K

(3.8)

Note that for two cones K1 ⊆ V1,K2 ⊆ V2 the direct product K1 ×K2 ⊆ V1 × V2 is also
a cone in the product space. It is therefore possible to restrict different entries of x in
(3.8) to different cones

K = K1 × · · · ×Kl, x = (x1, . . . , xl) : x ∈ K ⇔ xi ∈ Ki, i = 1, . . . , l.

Three important cones for convex optimisation are the positive cone

Rn+ ..= {x ∈ Rn : xi ≥ 0, i = 1, . . . , n} ,

the second-order cone or Lorentz cone

Qn ..=
{
x ∈ Rn : x2

1 + x2
2 + · · ·+ x2

n−1 ≤ x2
n, xn ≥ 0

}
and the positive semi-definite cone

Sn+
..=
{
A ∈ Rn×n : A = A>, x>Ax ≥ 0 ∀x ∈ Rn

}
,

which are all proper cones in Rn and Rn×n, respectively. The whole space Rn can also
be considered a cone but it is not proper because it is not pointed.
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TV discretisation
In our experiments we treated the two-dimensional images as column vectors by stacking
the columns of the image on top of one another. Assuming, for simplicity, square images
with n× n pixels, we represent the two-dimensional images as column vectors u ∈ Rn2 .
Then we define the gradient in x and y directions as follows

(∂+
x u)i,j ..= ui+1+(j−1)n − ui+(j−1)n ∀ i = 1, . . . , n− 1, j = 1, . . . , n

(∂+
y u)i,j ..= ui+jn − ui+(j−1)n ∀ i = 1, . . . , n, j = 1, . . . , n− 1

with zero boundary conditions

(∂+
x u)n,j ..= 0 ∀ j = 1, . . . , n

(∂+
y u)i,n ..= 0 ∀ i = 1, . . . , n.

We define the full gradient in each point as the vector

(∂+u)i,j =
(

(∂+
x u)i,j

(∂+
y u)i,j

)
.

Now we can define the discretisation of the total variation functional in two different
ways. The isotropic variant

TV(u) ..=
∑

1≤i,j≤n
‖(∂+u)i,j‖2 =

∑
1≤i,j≤n

(
((∂+

x u)i,j)2 + ((∂+
y u)i,j)2

) 1
2 , (3.9)

and the anisotropic variant

TVanisotr(u) ..=
∑

1≤i,j≤n
‖(∂+u)i,j‖1 =

∑
1≤i,j≤n

(∂+
x u)i,j + (∂+

y u)i,j , (3.10)

which is a special case of the general anisotropic TV first introduced and studied in [45].
In our experiments we used the isotropic TV variant as in the original ROF model [47].
With these definitions a conic formulation (3.8) of the model (3.1) can be written as

follows [24]:

min
∑

1≤i,j≤n
ti,j

s.t. u− f l ∈ Rn
2

+

fu − u ∈ Rn
2

+(
(∂+u)i,j
ti,j

)
∈ Q3 ∀1 ≤ i, j ≤ n,

where ti,j and u are the variables. For more details on conic formulations of the ROF
model and other TV regularised models as well as their dual forms see [24].
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CVX
CVX is a MATLAB package that translates a convex problem into a conic one and calls
an interior-point optimiser to solve it [26, 27]. CVX can handle problem formulations
that follow a set of rules, called the disciplined convex programming (DCP) ruleset [28].
These are rules that specify how convex functions can be combined while preserving
convexity. Together with a library of known convex functions CVX can automatically
verify that the given problem is convex and automate the following analysis and solution.
Another feature of CVX is a new approach to modelling smooth and non-smooth

functions as parametrised convex programs. These are called graph implementations [26].
Here functions are point-wise represented by a convex optimisation problem, specifically
they exploit the relation between a convex function and its epigraph:

f(x) ≡ inf {y | (x, y) ∈ epi f} ,

where the epigraph is defined as

epi f ..= {(x, y) ∈ X × R | f(x) ≤ y} .

The absolute value of x can, e.g., be modelled as the solution to

|x| = min y s.t. x ≤ y,−x ≤ y.

This allows CVX to also transform non-smooth problems into smooth conic problems.
The drawback of this approach is that often many new variables and constraints are
introduced in the translation process, therefore it is not applicable to very large problems.
To solve the resulting transformed problem, several external interior-point optimisers

are supported [40, 50, 51].

3.4 Choice of the parameters

In this section we will briefly explain how we chose the regularisation parameters in the
experiments. Since we want to see whether the interval-based model can perform better
than the ROF and TV-L1 models, we are interested in the best possible reconstructions
obtained with each of the latter two models. We optimised the reconstruction once with
respect to the PSNR of the reconstruction and once with respect to the SSIM.
To find the optimal value of the regularisation parameter, we first identified a value

hu0 at which the images are completely homogeneous. For the ROF model (3.2) we
found that in our examples hu0 = 1 is sufficient and hu0 = 10 is sufficient for the TV-
L1 model (3.3). Then we set hl0 = 0 and evaluated the optimisation problems at 11
equidistant parameter values α0 = hl0, α1, . . . , α10 = hu0 . Let αj be the value where the

PSNR/SSIM of the reconstruction was highest and define hl1 =
{
αj−1 for j > 0
α0 for j = 0

and

hu1 =
{
αj+1 for j < 10
α10 for j = 10

. We iterated this procedure until the range [hli, hui ] was smaller

than some predefined tolerance level hui − hli ≤ τ .
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In our experiments we chose τ = 5× 10−4. This led to 5 iterations for the ROF model,
resulting in 55 evaluations of the optimisation problem, and 7 iterations for TV-L1,
resulting in 77 evaluations.
The quantile parameter β for the interval-based model was chosen analogously with

the starting range [hl0, hu0 ] = [0, 1] and τ = 5× 10−4, resulting in 55 evaluations to find
the best reconstruction.

3.5 Reconstruction artefacts

Since we use confidence intervals for the noise in every pixel to obtain the lower and
upper bounds f l and fu in (3.1), we expect there will be pixels where the actual value
of the noise will be outside the confidence interval and therefore the true image will
not belong to the interval [f l, fu]. Since this interval enters the optimisation problem
(3.1) as a hard constraint, there is no chance of recovering the exact image in those
pixels. Therefore we expect such pixels to appear as outliers in the reconstruction, i.e. as
isolated pixels having a different value from the surrounding ones. The number of these
outliers depends on the quantile parameter β. This will be made clear by the following
proposition.

Proposition 4 (Probability of outliers).
Let u? ∈ Rm×n be the exact solution and f ∈ Rm×n the measured data. Suppose the
measurement is corrupted by additive noise with known probability density function g(x)
such that fij = u?ij + εij where i = 1, . . . ,m, j = 1, . . . , n and εij are independent and
identically distributed.
For β ∈ [0, 1] let us define f lij ..= fij−Qg

(
1− β

2

)
and fuij ..= fij−Qg

(
β
2

)
, where Qg is

the quantile function1. Then the probability that the value u?ij in pixel (i, j) of the exact
solution lies outside the interval [f lij , fuij ] is exactly β.

Proof. Begin by calculating the probability that u?ij is less than the lower bound:

P
(
u?ij < f lij

)
= P

(
fij − εij < fij −Qg

(
1− β

2

))
= P

(
εij > Qg

(
1− β

2

))
= 1− P

(
εij ≤ Qg

(
1− β

2

))
= 1−

(
1− β

2

)
= β

2

1The quantile function of g is defined as Qg : [0, 1] → R, p 7→ inf
{

x ∈ R :
∫ x
−∞ g(y)dy ≥ p

}
. Note

that this implies P (εij ≤ Qg(p)) = p.
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Table 1. PSNR/SSIM values of the noisy and reconstructed images. Rician noise with ν = 0
and σ = 10. The parameters were chosen to give the best possible PSNR.

Reconstruction model

Images Noisy ROF TV-L1 Interval

bird 25.1337/0.7025 25.9295/0.9382 26.2029/0.9265 36.8625/0.9212
cameraman 25.1399/0.7492 25.6870/0.8964 25.5367/0.8329 34.4167/0.9018

circles 25.2771/0.6378 26.2369/0.9485 26.6582/0.9498 40.8764/0.9679
horiz 25.1340/0.5901 26.0748/0.8952 26.4317/0.8874 40.5875/0.9771
lena 25.1337/0.8063 25.6598/0.9145 25.6621/0.8872 34.4891/0.9153

squares 25.1337/0.6119 26.1749/0.9806 26.7853/0.9804 46.6163/0.9930

Table 2. PSNR/SSIM values of the noisy and reconstructed images. Rician noise with ν = 0
and σ = 10. The parameters were chosen to give the best possible SSIM.

Reconstruction model

Images Noisy ROF TV-L1 Interval

bird 25.1337/0.7025 25.9256/0.9394 26.1873/0.9301 36.1587/0.9301
cameraman 25.1399/0.7492 25.6612/0.9002 25.1114/0.8511 33.7467/0.9188

circles 25.2771/0.6378 26.2341/0.9488 26.6479/0.9521 31.6435/0.9964
horiz 25.1340/0.5901 26.0662/0.8967 26.4073/0.8921 38.7219/0.9902
lena 25.1337/0.8063 25.6506/0.9170 25.5992/0.8909 34.1939/0.9209

squares 25.1337/0.6119 26.1749/0.9806 26.6435/0.9818 41.5186/0.9969

Similarly one can show that P
(
u?ij > fuij

)
= β

2 .

Thus P
(
u?ij /∈

[
f lij , f

u
ij

])
= P

(
u?ij < f lij

)
+ P

(
u?ij > fuij

)
= β.

To see how large the effect can be consider a standard image with 100 × 100 pixels.
The probability that every point of the exact solution lies inside the constructed intervals
is P

(
f l ≤ u? ≤ fu

)
= (1− β)m×n. For reasonable values of β in the order of 10−2 and

10−1 this is just 2× 10−44 and 3× 10−458, respectively.

3.6 Numerical Experiments

In this section we will present the results of our numerical experiments. The original
images shown in Figure 1 were corrupted by Rician noise with parameters ν = 0 and
σ = 10 as well as σ = 30 and then reconstructed using the ROF model (3.2), the
TV-L1 model (3.3) and the interval-based model (3.7). The PSNR and SSIM values
of the reconstructions can be seen in Tables 1 to 4. The reconstructions are shown in
Figures 2 to 7. We do not show all reconstructions with all combinations of parameters,
concentrating on the most revealing ones.
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Table 3. PSNR/SSIM values of the noisy and reconstructed images. Rician noise with ν = 0
and σ = 30. The parameters were chosen to give the best possible PSNR.

Reconstruction model

Images Noisy ROF TV-L1 Interval

bird 15.6489/0.2711 16.5782/0.8514 17.0139/0.8424 30.5621/0.7898
cameraman 15.6708/0.3704 16.4419/0.7235 16.6737/0.6610 27.3512/0.7308

circles 16.5245/0.3459 17.4363/0.7970 17.8473/0.8002 23.4186/0.4859
horiz 15.6034/0.1708 16.5762/0.6225 17.1142/0.6348 31.5209/0.8591
lena 15.6620/0.4172 16.4471/0.7538 16.7731/0.7333 27.5896/0.7491

squares 15.5980/0.1648 16.6382/0.8867 17.2755/0.8895 36.8142/0.9449

Table 4. PSNR/SSIM values of the noisy and reconstructed images. Rician noise with ν = 0
and σ = 30. The parameters were chosen to give the best possible SSIM.

Reconstruction model

Images Noisy ROF TV-L1 Interval

bird 15.6489/0.2711 16.5738/0.8558 17.0064/0.8448 27.7865/0.8495
cameraman 15.6708/0.3704 16.4258/0.7334 16.6291/0.6923 26.3029/0.7911

circles 16.5245/0.3459 17.4195/0.8065 17.7719/0.8147 17.1736/0.9447
horiz 15.6034/0.1708 16.5699/0.6286 17.1138/0.6349 28.9245/0.9425
lena 15.6620/0.4172 16.4384/0.7610 16.7702/0.7349 26.7800/0.7769

squares 15.5980/0.1648 16.6379/0.8868 17.2096/0.8942 33.2705/0.9748

Visual inspection
The first observation to make is that the colours in the interval-based reconstructions
are closer to the original than in the ROF and TV-L1 reconstructions. With ROF and
TV-L1 the reconstructions look too bright, as if the images were overexposed (see, e.g.,
Figure 2). This can be explained by the different assumptions about the noise that
are made by the reconstruction models. ROF as well as TV-L1 implicitly assume a
noise distribution with zero mean while the bounds in the interval-based model provide
the information that the Rician noise is only positive. Therefore the ROF and TV-L1

reconstructed grey values are approximately shifted by the mean of the noise.
One typical feature of the total variation regulariser is the staircasing that we briefly

discussed in Section 1.2. This effect can be seen most prominently in the reconstructions
of the ’bird’ image (Figure 3). It is also visible in the reconstructions of the ’cameraman’
and ’lena’ image as these contain smooth non-constant regions which are reconstructed
with piecewise-constant solutions. Staircasing can be observed with each optimisation
model we used, since they all incorporate the TV regulariser.
In the TV-L1 reconstruction of the ’squares’ image, we see that the middle square is

completely removed. This dependence on the geometry of the squares and not on their
contrast is a well-known feature of the TV-L1 model. The contrast of objects is preserved
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(a) Original image (b) Noisy image

(c) ROF, α = 0.003 (d) TV-L1, α = 0.641 (e) Interval, β = 0.233

Figure 2. Reconstruction of the ’cameraman’ image (optimised for PSNR) with Rician noise
and σ = 30. The colours in the interval-based reconstruction are closer to the original while
ROF and TV-L1 produce ’overexposed’ reconstructions.

until they are completely removed. This effect has been extensively studied in [16].
Let us now examine the noise removal characteristics of the three optimisation models.

Looking, for instance, at Figure 2 we see that all three methods are able to remove most
of the noise. The nature of the remaining noise, however, is different for the three models.
In the ROF reconstruction noise appears as small blocky artefacts while the TV-L1

model condenses the noise into bigger patches of the same colour. In the interval-based
reconstructions we observe artefacts in the form of isolated pixels that differ from the
background as anticipated in Section 3.5.

Quality metrics
Looking at the results in the Tables 1 to 4 we observe that the reconstructions with the
interval-based model usually have a significantly higher PSNR than the ROF and TV-L1

model whereas the SSIM is only slightly better and sometimes even slightly worse.
This can be explained by the previously mentioned effect that the ROF and TV-L1

reconstructions are shifted towards higher intensities, because they assume zero-mean
noise. Pixel-wise differences in intensity are the only source of information used by the
PSNR, whilst for the SSIM this is only one aspect of closeness, along with structural
information like the local covariance. This explains why the effect of incorrect brightness
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(a) Original image (b) Noisy image

(c) ROF (d) TV-L1 (e) Interval

Figure 3. Reconstruction of the ’bird’ image (optimised for PSNR) with Rician noise and σ = 30.
The staircasing effect of the total variation regulariser is apparent in all three reconstructions.

is less important for SSIM than PSNR.
The artefacts mentioned earlier also have an effect on the SSIM values of the interval-

based reconstructions. Introducing ’structure’ at locations where the ground truth is
homogeneous, they have an effect on the local covariance and result in lower SSIM values.
In reconstructions with high noise level the interval-based model yields a much better

SSIM (when optimised for SSIM) than the ROF and TV-L1 model on synthetic images.
This effect is not so significant in reconstructions with a small noise level, suggesting
that the interval-based model is more robust with respect to the increasing noise level.

Information loss due to thresholding
Let us have a close look at the ’circles’ example (Figures 4 and 5). In Table 3 we see
that the SSIM of the PSNR-optimised interval-based reconstruction of ’circles’ is much
smaller compared to the other images, while in the SSIM-optimised reconstruction the
PSNR is very low (Table 4). Looking at the corresponding reconstructed images in
Figure 4e (PSNR-optimised) and Figure 5e (SSIM-optimised) we see that in the former
image the reconstruction is still very noisy but the original colours are restored whereas
in the latter one the noise has been removed but the bright circles are greyed out.
The reason for such inaccurate reconstruction of bright regions of the image is that

in the regions that are bright in the original image adding positive noise leads to pixel
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(a) Original image (b) Noisy image

(c) ROF, α = 0.004 (d) TV-L1, α = 0.840 (e) Interval, β = 0.688

Figure 4. Reconstruction of the ’circles’ image (optimised for PSNR) with Rician noise and
σ = 30. Optimising the interval-based model for PSNR yields good reconstruction of the
colours but leaves a considerable amount of noise.

values greater than 255. Since in practice an image sensor cannot register more than
100% intensity we cut off these values at 255. This has an effect on the lower and upper
bounds: the noisy pixel value is assumed to be 255 whereas in fact it should be much
higher. Thus the bounds are constructed too low, in extreme cases even excluding the
original image. This results in the poor reconstruction of bright colours.
Therefore, in regions where the original colours were very bright they can only be

reconstructed using narrow intervals, thus leaving much of the noise. To remove the
noise we need wider intervals in which the regulariser can identify the solution, which
results in a loss of contrast. We will talk more about the choice of the width of the
intervals towards the end of this section.
The same effect of reconstructing bright areas too dark can be seen in the reconstruction

of the ’lena’ image in Figure 6e, where the bright parts of the hat and in the background
are somewhat darkened.

Influence of the regulariser
Let us take a closer look at the reconstruction of the ’squares’ image (Figure 7). We
observe that in the interval-based reconstruction the corners of the squares are rounded
off, while in the two other reconstructions they are sharper. Let us analyse why this
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(a) Original image (b) Noisy image

(c) ROF, α = 0.006 (d) TV-L1, α = 1.296 (e) Interval, β = 0.019

Figure 5. Reconstruction of the ’circles’ image (optimised for SSIM) with Rician noise and
σ = 30. Optimising the interval-based model for SSIM removes the noise but results in poor
colour reconstruction in bright regions.

happens.
In Section 2.2 we discussed the similarity between the interval-based method and the

classical residual method. The fidelity term in the residual method does not differentiate
between the elements in the feasible set, i.e., only the regulariser is responsible for
choosing the best element from that set. Therefore, features specific to the regulariser
are much more apparent in the residual-type interval-based reconstructions. Since we
use isotropic TV, whose characteristic shape is the unit circle [45], the rounding of sharp
corners is natural.

Optimal values of the regularisation parameters
In our experiments, optimal values of the regularisation parameter α for the ROF model
(3.2) typically are between 0.003 and 0.004 for the real images and slightly higher for
the synthetic images that consist mostly of homogeneous regions. For the TV-L1 model
(3.3) the values of α are in the range of 0.4 to 1.0 for the real images and 0.7 to 4.6 for
the synthetic images.
The optimal values of the quantile parameter β for the interval-based model (3.1) vary

quite significantly. Note that the quantile parameter is a priori confined to the interval
[0, 1]. The optimal values for the real images, which have more fine structure, range from
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(a) Original image (b) Noisy image

(c) ROF, α = 0.003 (d) TV-L1, α = 0.747 (e) Interval, β = 0.250

Figure 6. Reconstruction of the ’lena’ image (optimised for PSNR) with Rician noise and
σ = 30. Bright spots at the hat and in the background are greyed out in the reconstruction
with the interval-based model, but overall the colours are closer to the original than with
ROF and TV-L1.

0.038 to 0.383, whereas the optimal values for the synthetic images are generally smaller,
ranging from 0.007 to 0.111. An outlier here is the ’circles’ image, which we discussed
in the previous paragraph, with an optimal value of 0.688 for the PSNR-optimised
reconstruction with σ = 30 (Figure 4e) and 0.019 for the SSIM-optimised reconstruction
with σ = 30 (Figure 5e).
In Figure 8 we show plots of the PSNR and SSIM in dependence of the quantile

parameter for two images: ’lena’ and ’circles’. We omit the other plots as they look very
similar and don’t offer additional insight. It seems as if the graphs always have a unique
maximum although we couldn’t prove such a relationship. Also we can’t predict where
this maximum will occur, as it varies from image to image. We included the graphs of
the ’circles’ image (Figures 8c and 8d) because we can see clearly the aforementioned
effect, that the two quality metrics prefer opposite values of the quantile parameter due
to the thresholding at high values.
We also did not find any clear trend for a dependence of the quantile parameter β on

the noise level σ. However, it appears that for the real images generally the optimal
quantile parameter is lower as the noise level increases. For the synthetic images, that
are close to the kernel of the regulariser, no such effect is observed.
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(a) Original image (b) Noisy image

(c) ROF, α = 0.007 (d) TV-L1, α = 4.652 (e) Interval, β = 0.045

Figure 7. Reconstruction of the ’squares’ image (optimised for PSNR) with Rician noise and
σ = 30. The middle square is removed completely with the TV-L1 model. In the interval-
based reconstruction the corners of the squares are rounded off. The contrast looks better in
the interval-based reconstruction.

For PSNR-optimised reconstructions the optimal values of the quantile parameter β are
typically higher than for SSIM-optimised reconstructions, while the optimal regularisation
parameter α is lower when optimising for PSNR. This indicates that the SSIM prefers
more regularised images.
We can see that the quantile parameter β plays the role of the regularisation parameter

in the interval-based model. A low value corresponds to wide intervals [εl, εu] and [f l, fu]
and thus gives more choice for the regulariser, resulting in more regularisation. Looking
at the limiting case β → 0, the intervals become infinitely wide and the regulariser will
be minimised over the whole space Rnm. The reconstruction will then be an element
from the kernel of the regulariser since no other restrictions apply.
A high value of the quantile parameter on the other hand corresponds to a narrow

interval [f l, fu], therefore restricting the influence of the regulariser and ensuring that
the reconstruction does not depart too much from the measurement. In the limit β → 1
the interval [εl, εu] converges to the median of the noise distribution and thus the interval
[f l, fu] converges to the noisy data minus the median of the noise. Therefore the feasible
set consists of only one element that is purely determined by the noisy measurement.
Since there is only one element in the feasible set, the regulariser has no choice and the
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(a) Example PSNR(β) curve for ’lena’ with
Rician noise and σ = 30.

(b) Example SSIM(β) curve for ’lena’ with
Rician noise and σ = 30.

(c) Example PSNR(β) curve for ’circles’ with
Rician noise and σ = 30.

(d) Example SSIM(β) curve for ’circles’ with
Rician noise and σ = 30.

Figure 8. Example curves showing the dependence of PSNR and SSIM on the quantile parameter.
We can see that each curve has a unique maximum.

reconstruction will be the noisy input data minus the median of the noise.
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Chapter 4: Conclusions and Outlook
We studied the interval-based regularisation model for inverse problems with applications
in image reconstruction and denoising. The main advantage of this approach is that
it does not make any assumptions about the noise distribution in the data. This is
particularly important if the noise distribution is unknown or far from easy-to-model
distributions such as the Gaussian distribution. In our experiments with additive Rician
noise we observed that the interval-based model yields reconstructions with significantly
improved PSNR, while the improvement in SSIM was only significant at high noise levels
in synthetic images that are close to the kernel of the regulariser.
Furthermore we examined the use of the quantile parameter as a regularisation param-

eter. By determining the widths of the intervals it is able to balance the influence of
the regulariser against the influence of the fidelity term. We can also use the quantile
parameter to control the amount of artefacts in the reconstruction. These appear as
isolated pixels in contrast to, e.g., the ROF model, where the noise tends to form larger
block-like structures. Since the artefacts in the interval-based model are caused by the
hard constraints in the model formulation, we expect that the number of artefacts can
be reduced by a relaxation that allows pixels to be outside the interval but introduce a
penalty based on how far they exceed the bounds. We expect this also to increase the
SSIM of the reconstructions.
Another feature of the interval-based model is that the characteristics of the regulariser

are more pronounced in the reconstructions. This effect occurs because the regulariser
has more freedom in the residual-type interval-based model than in methods based on a
weighted sum of a fidelity term and a regulariser.
We think the interval-based model should be studied further. As mentioned above a

relaxation of the hard constraints has the potential to improve the reconstruction quality.
The model is also capable of dealing with uncertainty in the operator, which is an aspect
that we did not study in this work. This is for example important if we don’t know
the exact mathematical model that describes a physical relation or some model-related
parameters are only known approximately. Another open question is the automatic
choice of the quantile parameter. We would like to have a method to predict the optimal
or a near-optimal value of the quantile parameter from knowledge about the structure
of the image or the noise distribution. One possible approach could be to develop an
analogue to the discrepancy principle for the interval-based model.
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